www.schmid-m.com DC/DC Converters

SB_RN-1W & SB_RT-1W Series

1W, FIXED INPUT, ISOLATED & UNREGULATED SINGLE OUTPUT, DC-DC CONVERTER

FEATURES

Small Footprint, Ultra-thin package 1.5KVDC Isolation
Temperature Range: -40℃ ~ +85℃
No Heat sink Required
High Power Density
No External Component Required
Industry Standard Pinout
Compatible with DCP01 Series
Short circuit protection
RoHS Compliance

APPLICATIONS

The SB_RN-1W&SB_RT-1W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- Where isolation is necessary between input and output (isolation voltage ≤1500VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanding. Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

MODEL SELECTION SB0505RN-1W

	Inp	out		Output			
Part Number	Voltage (VDC)		Voltage	Current (mA)		Efficiency (%, Typ.)	Package Style
	Nominal	Range	(VDC)	Max	Min	(, .)[-7	O.y.o
SB0505RN-1W)		5	200	20	74	DIP
SB0509RN-1W *			9	111	12	78	DIP
SB0512RN-1W *			12	83	9	77	DIP
SB0515RN-1W *	5	4.5-5.5	15	67	7	76	DIP
SB0505RT-1W *	Э	4.5-5.5	5	200	20	74	SMD
SB0509RT-1W *			9	111	12	78	SMD
SB0512RT-1W *			12	83	9	77	SMD
SB0515RT-1W			15	67	7	76	SMD
SB1205RN-1W *			5	200	20	73	DIP
SB1209RN-1W *			9	111	12	74	DIP
SB1212RN-1W *			12	83	9	76	DIP
SB1215RN-1W *	12	10.8-13.2	15	67	7	75	DIP
SB1205RT-1W *	12	10.8-13.2	5	200	20	73	SMD
SB1209RT-1W *			9	111	12	74	SMD
SB1212RT-1W *			12	83	9	76	SMD
SB1215RT-1W *			15	67	7	75	SMD

ltem	Test Conditions	Min.	Тур.	Max.	Units
Storage humidity				95	%
Operating temperature		-40	85		
Storage temperature		-55		125	က
Temp. rise at full load			15	25	
Lead temperature	1.5mm from case for 10 seconds			250	
Short circuit protection			Cont	inuous	
Cooling		Free air convection			ion
Package material		Epoxy Resin(UL94-V0)			
MTBF		3500			K hour
Weight			1.4		g

ISOLATION SPECIFICATIONS					
Item	Test Conditions	Min.	Тур.	Max.	Units
Isolation voltage	Tested for 1 minute and 1mA max	1500			VDC
Isolation resistance	Test at 500VDC	1000			ΜΩ
Isolation capacitance			25		pF

ltem	Test Conditions	Min.	Тур.	Мах.	Units		
Output power		0.1		1	W		
Line regulation	For Vin change of 1%			±1.2			
	10% to 100% load (5V output)		12.8	15			
Lood regulation	10% to 100% load (9V output)		8.3	15	%		
Load regulation	10% to 100% load (12V output)		6.8	15			
	10% to 100% load (15V output)		6.3	15	1		
Output voltage accuracy	See tolerance envelope graph						
Temperature drift	Nominal input,100% full load			0.03	%/°C		
Ripple &Noise*	20MHz Bandwidth, Nominal input,50% load		20		mVp-p		
	20MHz Bandwidth, Nominal input,100% load		50	75			
Switching frequency	Full load, nominal input		100		KHz		

Output Voltage 50% 100% 10% Output Current (%)

TYPICAL CHARACTERISTICS Tolerance Envelope Graph

Typical Load Line

+2.5%

-2.5%

+10%

+5%

Nominal Voltage

RECOMMENDED REFLOW SOLDERING PROFILE

APPLICATION NOTE

Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load is not less than 10% of the full load, and that this product should never be operated under no load! If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power.

Recommended testing circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure2).

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against over load. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

No parallel connection or plug and play

RECOMMENDED CIRCUIT

EXTERNAL CAPACITOR TABLE (TABLE 1)

Vin (VDC)	Cin (uF)	Vout (VDC)	Cout (uF)
5	4.7	5	10
12	2.2	9	4.7
-	-	12	2.2
-	=	15	1

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

OUTLINE DIMENSIONS & FOOTPRINT DETAILS

Note:

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed.
- 2. All specifications measured at Ta=25°C, humidity <75%, nominal input voltage and rated output load unless otherwise specified.
- 3. In this datasheet, all the test methods of indications are based on corporate standards.
- 4. Only typical models listed, other models may be different, please contact our technical person for more details.